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ABSTRACT

This document considers the use of a partially known prototype signal to en-
hance the time difference of arrival (TDOA) computation for an On-Off Keyed
(OOK) signal. It is shown through analysis and simulation that this approach
can achieve a considerable reduction in the SNR threshold at which an ac-
ceptable rms TDOA spread can be achieved. For a signal transmitted with a
carrier frequency that is stable within each observation interval, the threshold
improvement can be in excess of 10 dB for a signal of practical interest. A
similar degree of improvement was also observed for a signal with a carrier
that exhibited frequency drift of up to 0.5 Hz within a 1.5 second interval.
Analysis and simulation results are shown to be consistent with computations
performed on data acquired from real transmitters.
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Reference Assisted TDOA Computation for On-Off Keyed
Signals

Executive Summary

The estimation of the relative delay between a signal component common to that received
at two spatially separated antennas is a problem of general interest. This Time Difference
of Arrival (TDOA) is usually estimated as the argument of the peak in the cross-correlation
computed between the two signals. The variance of this time estimate is dependent on the
Signal to Noise Ratio (SNR), including a product term that exacerbates the estimation
error when the SNR for both signals is low.

This report considers the use of a prototype signal to enhance the TDOA estimation
of a known signal of interest. In this approach, the TDOA is estimated as the difference
between two intermediate computations; the TDOA estimates computed between the pro-
totype and each of the two received signals. Each of these intermediate estimates exploits
the assumption that the SNR associated with a perfect prototype signal is infinite, which
consequently eliminates the SNR product term discussed in the preceding paragraph.

Expressions for the variance of this estimator are derived for the generic case and are
further refined for the special cases of Binary Phase Shift Keyed (BPSK) and On-Off
Keyed (OOK) modulation types. It is shown through analysis and simulation that this
prototype assisted approach can achieve a considerable reduction in the SNR threshold at
which an acceptable rms TDOA spread can be achieved. For an OOK signal with a perfect
prototype, analysis and simulations show that the threshold improvement can be in excess
of 10 dB for a signal of practical interest. These results are shown to be consistent with
computations performed on data acquired from real transmitters.

Although the analytical expressions derived in the report relate to the ideal case where
the prototype signal is a perfect replica of the transmitted signal, the report acknowledges
that the performance enhancement may be compromised when this is not true. Additional
simulations are presented that assess the impact of uncertainty in the signal carrier fre-
quency, specifically that it drifts linearly with time over the observation interval. For the
simulation parameters, only a slight degradation was observed for a carrier that drifted
linearly up to 0.5 Hz over a 1.5 second interval. Further mitigation against the effect of
carrier frequency drift, via a high pass filtering technique is also proposed.

An additional contribution of this report is the clarification of the conditions under
which a commonly cited expression for TDOA variance holds. That expression, from a
seminal paper in the field, was originally introduced with neither proof nor qualification.
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1 Introduction

The estimation of the relative delay between a signal component common to that received
at two spatially separated antennas is a problem of general interest. Specifically, consider
the reception of a transmitted signal s(t) by two spatially separated antennas, denoted
x1(t) and x2(t)

x1(t) = s(t) + n1(t)
x2(t) = αs(t + D) + n2(t), (1)

where n1(t) and n2(t) are additive noise with arbitrary distribution, α is a scalar coefficient
and D is the relative time delay, sometimes known as the Time Difference of Arrival
(TDOA) or Differential Time Offset (DTO) [3]. This is often estimated as the argument of
the correlation peak D̂ = arg maxRx1x2(τ). If one had the ability to exactly compute this
cross correlation function then the approach would be optimal, but when the correlation
must be estimated, the optimal (maximum likelihood) approach is to emphasise the energy
associated with the signal component by appropriately pre-filtering the x1(t) and x2(t) in
a generalised correlation [2, 5]. In the absence of a priori knowledge of the signal and
noise characteristics, a pragmatic approach can be as simple as prefiltering the signals to
approximately the bandwidth that contains most of the signal energy.

To minimise the sampling rate and consequently the computational complexity, correla-
tion of radio frequency (RF), or high intermediate frequency (IF) signals is often avoided
[5] and the correlation is performed on the complex envelopes1 x̃1(t) and x̃2(t) so that
D̂ = arg max R̂x̃1x̃2(τ). Consider the case where the signal and noise are restricted to
within an IF bandwidth ω0 ±W/2, where ω0 and W are the carrier frequency and band-
width respectively. Then if α = 1 and for sufficiently high signal to noise ratio (SNR)2

the Cramer Rao bound for the variance of the estimation of time delay using complex
envelopes is given by [5]

σ2
min =

[
T

2π

∫ ω0+W/2

ω0−W/2
2SNR(ω)(ω − ω0)2dω

]−1

, (2)

where

SNR(ω) =
Gss(ω)/Gn1n1(ω).Gss(ω)/Gn2n2(ω)

1 + Gss(ω)/Gn1n1(ω) + Gss(ω)/Gn2n2(ω)
(3)

and Gss(ω), Gn1n1(ω) and Gn2n2(ω) are the signal and noise auto-spectra. This can be
alternatively phrased in terms of frequency units of Hertz through a change of variables,
ω = 2πf and using bandwidth Bs Hz instead of W rad/sec. Then the minimum variance
is shown in Appendix A to be

1The complex envelope x̃1(t) is defined by x(t) = Real{x̃1(t) exp (j2πfct)}, where fc is the carrier
frequency of x(t).

2There exists a threshold region [4], below which, time delay estimation contains gross ambiguities, but
above which, the variance is bounded by the Cramer Rao low bound.
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σ2
min =

[
4π2T

∫ Bs/2

−Bs/2
2f2 G̃ss(f)/G̃n1n1(f).G̃ss(f)/G̃n2n2(f)

1 + G̃ss(f)/G̃n1n1(f) + G̃ss(f)/G̃n2n2(f)
df

]−1

, (4)

where G̃ss(f) = Gss(f + fc) etc.

Equation (4) simplifies further, in a way that provides greater insight into the problem,
as well as allowing a better comparison with commonly accepted literature [3] by consid-
ering the case where the noise spectra (G̃n1n1(f) = N1 and G̃n2n2(f) = N2) are white
within the bandwidth Bs Hz. If the signal has total signal power p, then the signal to
noise ratio associated with x1(t) and x2(t) is respectively γ1 = p/BN1 and γ2 = p/BN2,
where B ≈ Bs is the equivalent noise bandwidth. Then we can write G̃n1n1(f) = p/Bγ1

and G̃n2n2(f) = p/Bγ2 so that, as shown in Appendix A,

σ2
min =

p

4π2TB

[∫ Bs/2

−Bs/2
f2G̃ss(f)γeq(f)df

]−1

, (5)

where

γeq(f) =
2γ1γ2

p/BG̃ss(f) + γ1 + γ2

, (6)

which can be interpreted as an equivalent SNR associated with the generalised cross-
correlation between x1(t) and x2(t). This equivalent SNR is always poorer than the
individual SNRs, but is significantly less when both γ1 and γ2 are both less than one.
As an example, consider the case where the signal has a flat power spectrum between
−B/2 and B/2. Then p = BG̃ss(f) and the equivalent SNR can be expressed in a form
consistent with [3] 3 as

1
γeq

=
1
2

(
1
γ1

+
1
γ2

+
1

γ1γ2

)
. (7)

If γ1 = γ2 = 10 (10 dB) then the equivalent SNR γeq = 4.8 (6.8 dB) and the cross-term
γ1γ2 has contributed almost nothing (evaluation of (7) without the cross-term would yield
a 7 dB equivalent SNR). On the other hand, if the SNR on the two received signals is
γ1 = γ2 = 0.1 (-10 dB) then the equivalent SNR is γeq = 0.0083 or -20.8 dB and the
cross-term has had a considerable effect (evaluation of (7) without the cross-term would
yield a -13 dB equivalent SNR).

Fortunately, it will be shown in the next section that the impact of the cross-term
in (7) can be lessened by exploiting properties of the transmitted signal in a ‘synthetic’
reference.

3This expression for equivalent SNR, along with other related expressions (eq. equation B2), is given
in the broadly cited paper by Stein [3] without proof, nor qualification of the conditions under which it
applies. Some of these conditions are given consideration in Appendix B.
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2 Synthetic TDOA estimation

Assume that the receivers can generate an imperfect but noiseless copy, r(t) of the trans-
mitted signal, where

r(t) = a(t)s(t) + e(t) (8)

and where a(t) and e(t) represent the multiplicative and additive errors in the estimation
of s(t). The TDOA can then be estimated as

D̂ = D1r −D2r (9)

where D1r and D2r are the arguments of the peaks in each of Rx1r(τ) and Rx2r(τ), ex-
ploiting the observation that the timing uncertainty in r(t) is common to both correlation
functions.

The estimate of the TDOA between x1(t) and r(t) for the case of a perfect reference
signal, where a(t) is a constant and e(t) = 0 has an equivalent SNR equal to γ1r = 2γ1,
by substituting γ2 = ∞ into (6). An analogous error applies to the estimation of the
TDOA between the second signal and the reference. Under the assumption that the errors
on each of these TDOA estimates can be modelled as zero mean, identically distributed
random variables, it follows that the variance of the difference in (9) is equal to the sum of
the individual variances. Consequently, for a perfect reference signal and when the noise
is white, the variance of the TDOA error is

σ2
synth ≥ σ2

1r + σ2
2r

=
p

4π2TB




[∫ Bs/2

−Bs/2
f2G̃ss(f)2γ1df

]−1

+

[∫ Bs/2

−Bs/2
f2G̃ss(f)2γ2df

]−1



=
p

4π2TB

[∫ Bs/2

−Bs/2
f2G̃ss(f)df

]−1 (
1

2γ1
+

1
2γ2

)
, (10)

which has the same form as equation (5), for the direct TDOA estimation but with

1
γsynth

=
1
2

(
1
γ1

+
1
γ2

)
. (11)

This is identical to equation (7) for direct TDOA estimation, but without the cross-term
that was identified as being most significant if γ1 and/or γ2 is small. It is noteworthy that
for synthetic TDOA estimation, and assuming a perfect reference, the equivalent SNR is
independent of frequency, irrespective of the power spectral shape of the signal of interest.
The dependence of the minimum variance on the spectral shape of the signal of interest
can be extracted from the variance expression by observing that p =

∫ Bs/2
−Bs/2 Gss(f)df and

employing the definition of ‘rms radian frequency’ [3],

β = 2π

[∫∞
−∞ f2G̃ss(f)df∫∞
−∞ G̃ss(f)df

]1/2

. (12)

3
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Then the minimum variance for the synthetic estimation of TDOA is the simplification of
(5),

σ2
min =

1
β2TBγsynth

. (13)

Although in general, the equivalent SNR for ‘direct’ TDOA estimation is not inde-
pendent of frequency, under certain conditions frequency independence is achieved, or
approximately achieved, and a similar simplification is possible. Appendix B shows that
such cases include when the signal of interest is white or when the SNR is high, with a
lower variance bound (B2) having similar form to (13).

3 Simulation results

In this section, the results of simulations are presented, that better illuminate the poten-
tial benefit of using the synthetic technique for the estimation of TDOA. Although the
fundamental focus of this report is on TDOA estimation for an OOK signal, results are
first presented for two other, simpler cases. First, a white signal of interest is considered,
as this allows for a very close approximation to the maximum likelihood estimator to be
used without requiring a complicated prefiltering. The second special case is for a Binary
Phase Shift Keyed (BPSK) signal, since it also has a nicely defined power spectrum and
can be considered as a constituent component of an OOK signal4.

3.1 White Gaussian signal of interest

Simulation results are presented here for the special case where the signal of interest is a
real, white, Gaussian noise-like signal. The signal is centered exactly at baseband and is
processed in the presence of complex Gaussian white noise5. A 312.5 kHz sampling rate
and integration period T = 1.5 sec were used. The signal and noise were bandlimited to
within approximately± 5 kHz bandwidth using a 512-tap FIR filter6. The noise bandwidth
B and the rms radian frequency β were computed to equal 9.6 kHz and 1.74e3 rad/sec
respectively. (The filter frequency response is shown later in Figure 3.)

Figure 1 shows the simulation results for the direct and synthetic TDOA estimation
represented by circles and crosses respectively. Each data point was computed using 100
simulation runs and for the direct TDOA computation below -15 dB SNR, any outlier
TDOA values in excess of 100 µsec were excluded from the rms computation; such outliers
are the result of gross errors in the TDOA estimate, and represent behaviour below the
threshold at which the TDOA estimate is ambiguous and not a noisy displacement from
true correlation peak [4].

The lower bound for the synthetic estimation, predicted from the application of equa-

4An OOK signal can be represented as the sum of CW and BPSK components.
5The use of a noise source that is complex may at first seem questionable, but is representative of a

real world scenario, in which the IF noise would in general be asymmetric about the carrier frequency.
6generated with the Matlab routine ‘fir1’
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tions (13) and (11) is shown by the solid curve and the lower bound on the direct estima-
tion, given by Stein’s expression, (7) and (B2), is shown as the dashed curve.

There is a very close agreement between the simulation results and the theoretical
bounds for this simple case where both the signal and noise have the same shaped, flat
power spectra. If the received signal (and noise) is bandlimited by a square IF filter, theory
suggests that optimal ‘direct’ TDOA estimation is achieved with a conventional correlation.
The performance advantage that synthetic estimation offers in this case is clear and grows
as SNR is reduced. As an example, it can be seen that synthetic estimation improves
the rms TDOA error by extending the threshold at which an 8 µsec error is achieved by
around 10 dB.

Figure 2 is included here to show how the various other expressions for the lower
bound on the rms error for direct TDOA estimation give subtly differing curves. The
black curve corresponds to the application of Stein’s equation (7), using β computed from
numerical integration, as in Figure 1. The dotted curve corresponds to the use of equation
(6), with the equivalent SNR γ also computed from the exact filter frequency response.
That this curve doesn’t match the simulation data as well as the application of (7) is
because although the signal and noise have the same spectral shape, the noise is implicitly
modelled as having been filtered by a brick wall filter, yet the signal is being modelled
‘exactly’; the alternative use of the brick wall response in (6) yields the same result as the
application of (7). The overlaid green and dashed blue traces respectively correspond to
the application of (6) and (7) with the assumption of a brick wall filter response. The red
curve corresponds to the low SNR approximation of Appendix B.3.
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Figure 1: rms TDOA accuracy associated with a white noise signal.
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Figure 2: rms TDOA accuracy for a white signal, direct estimation.

3.2 BPSK signal

This section considers results for a BPSK signal of interest, using a similar approach to
that in 3.1, but with a 5400 baud, baseband BPSK signal. The rms radian frequency β
was numerically computed to equal 11.3 krad/sec, including the effect of the receiver filter
frequency response7, shown in Figure 3 along with the filtered BPSK power spectrum.
Each data point was again based on 100 simulation runs.

Figure 4 shows the simulation results for the direct and synthetic computation as circles
and crosses, respectively. The theoretical lower rms bound for synthetic computation is
shown as the solid black curve and closely matches the simulation results.

The theoretical lower bound for the direct computation, suggested by the application
of Stein’s equations (7) and (B2), is shown by the dotted curve and the bound suggested
by the application of (5) and (6) is shown as the dashed curve. Each of the theoretical
curves were evaluated using a numerical evaluation of the true IF filter impulse response
in the computation of the parameters γ, β and B.

The consistency between the theoretical curves for the direct TDOA estimation is close.
The application of equations (5) and (6) has the best agreement with the simulation results,
which is satisfying since the BPSK signal has a spectrum that significantly deviates from
the flat shape necessary for the general application of Stein’s expression (7) for equivalent

7For the BPSK signal, β is the same to the first decimal place, if the true filter frequency response
is used or if it is approximated by a ‘brick wall’ response, since the BPSK spectral shape dominates the
filtered spectrum.
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Figure 3: Power spectrum of filtered BPSK signal (blue) and filter frequency response
(red).

SNR to hold. However, the same degree of consistency between simulation and analysis
has not been achieved for the direct computation as was the case for a white noise signal,
due to the non-ideal prefiltering of the ‘received’ signal in the simulations. Recall that as
indicated in section 1, the maximum likelihood ‘direct’ estimator is only achieved through
prefiltering the received signals with a filter having an impulse response proportional to
the (square root of the) input SNR spectral shape [5], which is not the case here.

3.3 OOK signal

The theoretical variance bound for TDOA estimation through correlation of complex en-
velopes of an OOK signal is derived in Appendix C. The analysis recognises that an OOK
signal can be considered as the sum of equal energy BPSK and continuous wave (CW)
signal components, but that the CW component makes no contribution to the TDOA
estimation8. The CW component is explicitly discounted from the analysis by basing the
variance bound on the BPSK component only. It is shown in Appendix C that within the
receiver bandwidth Bs, the SNR associated with the BPSK component is related to the
SNR of the OOK signal by

γBPSKBs
=

ψ

1 + ψ
γOOKBs

, (14)

8The correlation function between two tones of identical frequency has no distinct peak.
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Figure 4: rms TDOA accuracy for a BPSK signal.

where

ψ =
σ2

BPSKBs

σ2
BPSK∞

(15)

and where σ2
BPSKBs

and σ2
BPSK∞ are the respective variances of the BPSK signal compo-

nent within the bandwidth Bs and over the theoretical, infinite bandwidth. Using the rms
radian frequency for a BPSK signal, βBPSK and substituting (14) into equation (13) gives
the variance bound for the synthetic approach. The bound for the direct correlation is
similarly found using (5) or the applicable special case equation from Appendix B. A sec-
ond analytical approach is included in Appendix C.2 which makes explicit use of the SNR
of the OOK signal and develops a corresponding expression for its rms radian frequency.
As discussed in Appendix C.2, the performance of this second approach is inferior.

The performance bounds have been evaluated for OOK signalling at fb = 5400 Hz,
sampling frequency fs = 312.5 kHz, a 0 Hz carrier (i.e. basebanded signal), an observation
period T = 1.5 sec, Bs ≈ 10 kHz (±5 kHz) and additive white Gaussian noise. Figure 5
shows the rms error expected for the synthetic TDOA computation (using (11) and (13))
and the rms error for direct computation using (5) and (6). The parameters β, B and γ
were numerically computed using the exact equivalent baseband frequency response of the
bandlimiting filter, generated by the Matlab ‘fir1’ function, with 512 taps. Like the results
for white or BPSK signals, the curves portray a significant advantage in the threshold at
which a given TDOA accuracy can be achieved through using the synthetic computation.
This advantage can be in excess of 10 dB at low SNR.
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Figure 5: Theoretical and experimental rms TDOA accuracy associated with an OOK
signal, with 0Hz carrier frequency.

4 Implications of an imperfect reference signal

In practise the reference signal will exhibit some error and one of the principle sources
of uncertainty will likely be an imperfectly estimated carrier. This section examines the
effects of carrier estimation error on the performance of synthetic TDOA computation.

4.1 Considerations for a non-zero carrier frequency

If the signal of interest (SOI) is translated to baseband with some residual frequency offset,
the use of the expression for rms radian frequency (12) will incur an error. To examine the
effect of this, simulations were conducted on a signal set incorporating the OOK SOI from
section 3, but with a carrier frequency that was randomly selected within the arbitrary
range 10 to 333 Hz9. The performance, shown in Figure 6 can be seen to be nearly identical
to that shown in Figure 5, for a 0 Hz carrier. This suggests that the slight asymmetry of
the associated power spectrum has little impact on the modelled TDOA accuracy.

9The simulations were performed using a routine that was written to facilitate the observation of effects
associated with having a linearly drifting carrier frequency. The drift was achieved using a Matlab ‘chirp’
function, which was suspected of not performing well with a notionally zero frequency start, hence the
lower 10 Hz limit. In each of 100 iterations, a different carrier frequency was randomly chosen.
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Figure 6: Theoretical and experimental rms TDOA accuracy associated with an OOK
signal, random carrier frequency.

4.2 Simulations with imperfect carrier frequency estimation

A more significant practicality is that the SOI may have a carrier frequency uncertainty
that drifts with time. A simple and effective estimator for the carrier frequency of an
OOK signal is proportional to the argument of the peak in the estimated power spectrum,
usually computed using fast Fourier transforms (FFTs). For a stable carrier frequency,
an FFT-based estimator will provide increased accuracy as the block length is increased.
However for a drifting carrier, the accuracy suffers if the block length extends too far.
Although the degradation to the accuracy of the TDOA estimate for a drifting carrier is
a function of the way in which the carrier frequency drifts, a useful figure of merit is the
performance in response to a carrier that drifts linearly over the integration interval.

Once again, consider the OOK signal from previous simulations. However, now con-
sider that the carrier frequency is known at the start of the integration interval but that
it drifts linearly from there after. Figure 7 shows how the accuracy of the TDOA estimate
suffers as the maximum frequency drift increases from 0Hz up to 1.0 Hz. The curve for
1.0 Hz can be seen to have a poorer result than for the TDOA estimated directly from the
correlation between the two noisy received signals; this is an example of a behaviour that
is conjectured to generally occur when the drift exceeds approximately the reciprocal of
the integration period. Such carrier frequency drift affects the quality of the correlation
in various ways, including a reduction in the maximum correlation peak. Another source
of performance degradation is illustrated in Figure 8, which shows examples of the impact
on the estimated correlation function for increasing drift rates.
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The magnitude of the correlation function for 0.25 Hz drift has a similar shape to that
expected for a steady carrier. However, as the drift increases, the shape of the correlation
function begins to grow more rounded and with an increasing number of ‘lobes’. Because
the magnitude of these lobes can be large compared with the level of the ‘true’ peak10

an ambiguity of considerable degree can arise. This is particularly clear in Figure 8 for
1.0 Hz drift, where an ambiguity of around 0.5 sec could exist, through the confusion of
the ‘true’ peak at 1.5 sec with a spurious peak at around 1.0 sec.
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Figure 7: rms synthetic TDOA accuracy associated with an OOK signal with linear
frequency drift.

4.3 Mitigation of ambiguity due to frequency drift

Some mitigation of the ambiguity associated with carrier frequency drift is possible by
simply excluding any TDOA estimates outside an assumed window of interest. For in-
stance, the 0.5 sec ambiguity associated with the 1.0 Hz uncertainty in Figure 8 would
likely be sufficiently different from expectation that would suggest it be discarded.

Additional mitigation is possible through employing some simple signal processing; an
appropriate high pass filtering of the correlation function magnitude. Figure 9 compares
the unfiltered correlation function magnitude for the 1.0 Hz drift example with that fol-
lowing high pass filtering with a single pole, Butterworth, high pass filter with corner
frequency equal to fs/20000. It is clear that the gross ambiguity associated with the car-
rier uncertainty has been removed. Figure 10 shows the improvement to the rms TDOA
accuracy through the application of this high pass filtering. It can be seen that for low

10The ‘true’ peak is that which correctly reflects the true TDOA.
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Figure 8: Magnitude correlation functions for linear carrier frequency drift.
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Figure 9: Magnitude correlation functions for 1.0 Hz linear carrier frequency drift with
and without high pass filtering.

SNR, the performance in the presence of 1.0 Hz carrier frequency drift (and even 2.0 Hz)
is now better than the direct TDOA computation11.

11That the knee in the Figure 10 curve depicting the TDOA accuracy for 0 Hz carrier drift occurs at
-20 dB, yet there was no such knee depicted in Figure 7, reflects the subtle influence of the high pass
filtering on the correlation function.
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Figure 10: rms synthetic TDOA accuracy associated with an OOK signal with linear
frequency drift, using high pass filtering of the correlation magnitude.

4.4 Experimental trial results

Experimental trials were conducted using a radio frequency transmitter of interest, with
parameters that match the simulated OOK source in section 3. Data was acquired at an
SNR computed to be approximately equal to +10 dB within a 10 kHz bandwidth and
white Gaussian noise was added to degrade the signal to the levels illustrated. A small
amount of narrowband interference was also present on the original signal. The carrier
was estimated from the argument of overlapping FFTs12 and the frequency search range
was restricted to 50 Hz about the approximately 0 Hz carrier. The experimental results in
Figure 11 show a degree of performance difference between direct and synthetic estimation
that is commensurate with the analysis and simulation results.

12FFTs using 1 second of data, overlapped by 87.5% and 4 times oversampled through zero padding.
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Figure 11: rms TDOA accuracy associated with an OOK signal received in a realistic
RF environment.
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5 Conclusion

This report has developed analytical expressions for the variance bounds associated with
the use of a prototype signal in a ‘synthetic’ estimation of time difference of arrival, with a
focus on On-Off-Keyed signalling. Simulations have been conducted, which illustrate close
agreement with theory and which suggest that under low SNR conditions, the accuracy
with which TDOA can be estimated can be improved by an amount equivalent to in excess
of a 10 dB SNR improvement. Some experimental results, using an RF transmission
through a representative environment have been included, and show a similar degree of
improvement.
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Appendix A Simplification of the Cramer Rao

bound for TDOA estimation using complex

envelopes

For the case where the signal and noise are restricted to within an IF bandwidth ω0±W/2,
where α = 1 and for sufficiently high SNR [5] the Cramer Rao bound for the variance of
the estimation of time delay using complex envelopes is given by [5]

σ2
min =

[
T

2π

∫ ω0+W/2

ω0−W/2
2SNR(ω)(ω − ω0)2dω

]−1

, (A1)

where

SNR(ω) =
Gss(ω)/Gn1n1(ω).Gss(ω)/Gn2n2(ω)

1 + Gss(ω)/Gn1n1(ω) + Gss(ω)/Gn2n2(ω)
(A2)

and Gss(ω), Gn1n1(ω) and Gn2n2(ω) are the signal and noise auto-spectra. This can be
alternatively phrased in terms of frequency units of Hertz through a change of variables,
ω = 2πf and using bandwidth B Hz instead of W rad/sec. Then the minimum variance
is

σ2
min =

[
T

2π

∫ fc+Bs/2

fc−Bs/2
(2π)22(f − fc)2

Gss(f)/Gn1n1(f).Gss(f)/Gn2n2(f)
1 + Gss(f)/Gn1n1(f) + Gss(f)/Gn2n2(f)

d(2πf)

]−1

=

[
4π2T

∫ fc+Bs/2

fc−Bs/2
2(f − fc)2

Gss(f)/Gn1n1(f).Gss(f)/Gn2n2(f)
1 + Gss(f)/Gn1n1(f) + Gss(f)/Gn2n2(f)

df

]−1

,

(A3)

which is equivalent to

σ2
min =

[
4π2T

∫ Bs/2

−Bs/2
2f2 G̃ss(f)/G̃n1n1(f).G̃ss(f)/G̃n2n2(f)

1 + G̃ss(f)/G̃n1n1(f) + G̃ss(f)/G̃n2n2(f)
df

]−1

, (A4)

where G̃ss(f) = Gss(f + fc) etc.

Equation (A4) simplifies further, in a way the provides greater insight into the prob-
lem, as well as allowing a better comparison with commonly accepted literature [3] by
considering the case where the noise spectra G̃n1n1(f) = N1 and G̃n2n2(f) = N2 are white
within the bandwidth Bs Hz. If the signal has total signal power p, then the signal to
noise ratio associated with x1(t) and x2(t) is respectively γ1 = p/BN1 and γ2 = p/BN2,
where B ≈ Bs is the equivalent noise bandwidth. Then we can write G̃n1n1(f) = p/Bγ1

and G̃n2n2(f) = p/Bγ2 so that
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G̃ss(f)/G̃n1n1(f).G̃ss(f)/G̃n2n2(f)
1 + G̃ss(f)/G̃n1n1(f) + G̃ss(f)/G̃n2n2(f)

=

=
G̃2

ss(f)
G̃n1n1(f)G̃n2n2(f) + G̃ss(f)G̃n2n2(f) + G̃ss(f)G̃n1n1(f)

=
G̃ss(f)

G̃n1n1(f)G̃n2n2(f)/G̃ss(f) + G̃n2n2(f) + G̃n1n1(f)

=
G̃ss(f)

p2/B2γ1γ2G̃ss(f) + p/Bγ1 + p/Bγ2

=
G̃ss(f)

(p/B)(p/(Bγ1γ2G̃ss(f)) + 1/γ1 + 1/γ2)

=
BG̃ss(f)

p

γ1γ2

p/BG̃ss(f) + γ1 + γ2

(A5)

and

σ2
min =

[
4π2T

∫ Bs/2

−Bs/2
2f2 BG̃ss(f)

p

γ1γ2

p/BG̃ss(f) + γ1 + γ2

df

]−1

=

[
4π2T

∫ Bs/2

−Bs/2
f2 BG̃ss(f)

p

2γ1γ2

p/BG̃ss(f) + γ1 + γ2

df

]−1

=
p

4π2TB

[∫ Bs/2

−Bs/2
f2G̃ss(f)γeq(f)df

]−1

, (A6)

where

γeq(f) =
2γ1γ2

p/BG̃ss(f) + γ1 + γ2

(A7)

can be interpreted as an equivalent SNR associated with the generalised cross-correlation
between x1(t) and x2(t).
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Appendix B Expressions for the mimimum

variance of direct TDOA estimation

B.1 White signal

If signal of interest and noise are both white over the bandwidth −B/2 to B/2 Hz then
the minimum variance for the ‘direct’ estimation of TDOA can be obtained by observing
that γeq(f) = γeq, p =

∫∞
−∞Gss(f)df and using the definition of ‘rms radian frequency’

β = 2π

[∫∞
−∞ f2Gss(f)df∫∞
−∞Gss(f)df

]1/2

. (B1)

Then equation (A6) simplifies to

σ2
min =

1
β2γeqTB

. (B2)

and the equivalent SNR simplifies from (A7) to equation (7). Equation (B2) is the
expression stated, without proof nor qualification of the conditions under which it applies,
in [3].

B.2 High SNR

If the SNR associated with the received signals is sufficiently high, then (A7) is approxi-
mately

γeq ≈ 2γ1γ2

γ1 + γ2
(B3)

which is again independent of frequency and again, the minimum variance for the direct
TDOA estimation is given by (B2).

B.3 Low SNR

If the SNR associated with the received signals is sufficiently low, then (A7) is approxi-
mately

γeq(f) ≈ 2γ1γ2BGss(f)
p

, (B4)

which, unlike for the high SNR condition, is not independent of frequency. However, an
expression for the minimum variance of the direct estimator, under this low SNR condition,
that is independent of frequency can be derived by defining an alternative expression,

β̃ = 2π




∫∞
−∞ f2G̃2

ss(f)df
(∫∞
−∞ G̃ss(f)df

)2




1/2

. (B5)
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By substituting (B4) into (A6) and using (B5), it can be readily shown that for low SNR,

σ2
min ≈

1
2β̃2γ1γ2TB2

. (B6)

The form here clearly differs from (B2) and illustrates an example of where the simple
equations in [3] need to be treated with caution.
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Appendix C Bounds for the minimum variance

of TDOA estimation from cross-correlation of

a complex OOK signal

Two approaches are proposed here for the analysis of the bounds on the variance of TDOA
estimation for a complex OOK signal. Both approaches recognise that an OOK signal can
be considered as the sum of equal energy BPSK (binary phase shift keyed) and CW
(continuous wave) signal components, but that the CW component makes no contribution
to the TDOA estimation13.

C.1 Approach 1: Explicit consideration of BPSK signal com-
ponent

In the first approach, the non-contribution of the CW component is explicitly included
by computing the rms radian frequency β based only on the BPSK component and cor-
respondingly, making use only of the SNR associated with the BPSK component. Specif-
ically, consider that the signal is bandlimited by the receiver to an RF bandwidth Bs Hz,
such that the complex envelope (complex baseband signal) has bandwidth approximately
between −Bs/2 and +Bs/2 Hz. Then equation (B1) becomes

βBPSK = 2π

[∫∞
−∞ f2GBPSK(f)df∫∞
−∞GBPSK(f)df

]1/2

(C1)

with GBPSK(f) = SBPSK(f)|H(f)|2, where SBPSK(f) = sin2(π2f/fb)/(π2f/fb)2 [1],
fb is the signalling rate and H(f) is the filter frequency response. The SNR associated with
the bandlimited BPSK signal γBPSKBs

can be deduced from γOOKBs
, the SNR associated

with the bandlimited OOK signal by considering that over infinite bandwidth, the power
σ2

OOK in the OOK signal is σ2
BPSK + σ2

CW , where σ2
BPSK = σ2

CW . Define

ψ =
σ2

BPSKBs

σ2
BPSK∞

(C2)

as the ratio of σ2
BPSKBs

=
∫ Bs/2
−Bs/2 WBPSK(f)df , the power in the bandlimited BPSK

signal to σ2
BPSK∞ =

∫∞
−∞WBPSK(f)df , the wideband signal power. Then the power in

the bandlimited OOK signal is

σ2
OOKBs

= σ2
BPSKBs

+ σ2
CW

= ψσ2
BPSK∞ + σ2

BPSK∞

= (1 + ψ)σ2
BPSK∞

=
1 + ψ

ψ
σ2

BPSKBs

∴ σ2
BPSKBs

=
ψ

1 + ψ
σ2

OOKBs
. (C3)

13The correlation function between two tones of identical frequency has no distinct peak.
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Since the same noise is common to both the whole OOK signal as well as the BPSK
component, the SNR has the same relationship,

γBPSKBs
=

ψ

1 + ψ
γOOKBs

. (C4)

Equations (C4) and (C1) can then be used in conjunction with the appropriate expressions
from sections 1 and 2 to realise the lower bound for the OOK signal.

C.2 Approach 2: Exact expansion of the OOK expression

In this second approach, consider an explicit expansion of β for the OOK signal,

βOOK = 2π

[∫∞
−∞ f2GOOK(f)df∫∞
−∞GOOK(f)df

]1/2

= 2π

[∫∞
−∞ f2(GBPSK(f) + GCW (f))df∫∞
−∞(GBPSK(f) + GCW (f))df

]1/2

= 2π

[∫∞
−∞ f2GBPSK(f)df +

∫∞
−∞ f2GCW (f)df∫∞

−∞GBPSK(f)df +
∫∞
−∞GCW (f)df

]1/2

. (C5)

Now, assuming that the CW signal component lies at exactly f = 0 Hz, the second
numerator term vanishes. Also, it can be recognised that the denominator components
are the power in each of the bandlimited BPSK and CW components. Equations (C2) and
(C3) can be manipulated to show that these are related by σ2

CW = σ2
BPSK∞ = σ2

BPSKBs
/ψ

so that (C5) simplifies to

βOOK = 2π

[ ∫∞
−∞ f2GBPSK(f)df

(ψ + 1)/ψ
∫∞
−∞GBPSK(f)df

]1/2

=

√
ψ

ψ + 1
βBPSK (C6)

Equation (C6) can be used with the equivalent SNR for the (bandlimited) received
OOK signal to bound the TDOA estimation accuracy.

The apparent inconsistency between this and ‘approach 1’ is reflected in Figure C1,
which shows a significant disagreement for direct TDOA estimation using each of the two
analytical approaches, applied to the OOK signal example from section 3.3. For com-
putational simplicity, the Stein equations were used to generate curves for direct TDOA
estimation using both approaches 1 and 2, respectively plotted using dash-dot and dashed
line types. The red and black curves correspond to the respective use of a ‘brick wall’ and
exact filter approximation in the computation of β, the noise bandwidth B and, where
applicable, γeq(f). Simulation results are overlaid with the curves representing theory.

Most notable from Figure C1 is the considerable discrepancy between the two ap-
proaches to handling the OOK signal. This can be explained by considering that the
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Figure C1: Theoretical and experimental rms TDOA accuracy associated with an OOK
signal with 0 Hz carrier frequency. The red curves show the results when the receive filter
is approximated by a ‘brick wall’ for the purposes of computation of β and B.

analytical lower variance bounds can only be achieved when the correlation is preceded
by filtering that is proportional to the square root of the SNR spectral shape. In ‘ap-
proach 1’, the signal of interest is effectively a BPSK signal, which differs less from the
rectangular filtering function used in the simulations than does an OOK spectral shape.
Consequently, ‘approach 1’ yields a tighter lower variance bound for the direct correla-
tion. With ‘approach 1’ established as the more accurate method, the curves for direct
estimation using ‘approach 1’ and equations (5) and (6) are also included as solid lines,
with blue and green colour respectively signifying the use of the approximate and exact
filter responses respectively.

The curves shown in red and green have been included to explore the benefit of more
accurately computing the rms radian frequency β and confirm that, at least for the current
parameters, there is little degradation to the accuracy of the analytical evaluations through
using the more coarse filter approximation.
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is stable within each observation interval, the threshold improvement can be in excess of 10 dB for
a signal of practical interest. A similar degree of improvement was also observed for a signal with
a carrier that exhibited frequency drift of up to 0.5 Hz within a 1.5 second interval. Analysis and
simulation results are shown to be consistent with computations performed on data acquired from real
transmitters.
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